
Property based testing for Stateful apps

Akshay Karle



1

Context



Automated Product Ingestion



Example based testing
(testing "should return a valid created event when mortgage doesn't exist already"

(let [raw-mortgage {:source_id 999

                    :name "Mortgage you would repay until death"

                    :mortgage_type "standard"

                    :provider_name "A Mortgage"

                    :provider_id 999

                    :apr 1.1}

      command {:type :create :source "Provider A" :domain :mortgage :data raw-mortgage}

      {:keys [state event]} (process command nil)]

  (is (= :created (:status event)))

  (is (= (-> command :data :name) (:name state)))))



Introduction of Specs & Generators

2



(s/def ::name string?)

(s/def ::source_id number?)

(s/def ::mortgage_type #{"standard" "fixed_rate" "discount" "equity_release"})

(s/def ::provider_id number?)

(s/def ::provider_name string?)

(s/def ::positive-number (and number? #(< 0 %) #(not= Double/POSITIVE_INFINITY %)))

(s/def ::apr ::positive-number)

(s/def ::mortgage (s/keys :req-un [::name

                                   ::source_id

                                   ::mortgage_type

                                   ::provider_id

                                   ::provider_name]

                         :opt-un [::apr]))

(s/def :command/type #{:create :update :publish :unpublish :archive})

(s/def :command/source string?)

(s/def :command/domain #{:mortgage})

(s/def :command/data ::mortgage)

(s/def ::command (specs/keys :req-un [:command/type :command/source :command/data :command/domain]))

Adding specs



(def raw-mortgage-generator (s/gen ::mortgage))

(def raw-mortgage (gen/generate raw-mortgage-generator))

(def command-generator (s/gen ::command))

(defn- type-gen [types]

  (gen/generate (gen/elements types)))

(defn modify-command [raw type c]

  (merge c {:data raw :type type}))

(defn- gen-command-with [raw type]

  (gen/fmap (partial modify-command raw type) command-generator))

(defn- mortgage-commands-for [types]

  (gen-command-with raw-mortgage (type-gen types)))

(testing "should return a valid created event when mortgage doesn't exist already"

  (let [command (mortgage-commands-for [:create])

        {:keys [state event]} (process command nil)]

    (is (= :created (:status event)))

    (is (= (-> command :data :name) (:name state)))))

Now using generators from the specs



3

State machine



Different product transitions



(defspec create-new-mortgages

  100

  (prop/for-all

   [command (mortgage-commands-for [:create])]

   (let [{:keys [state event]} (process command nil)]

     (is (= :created (:status event)))

     (is (= (-> command :data :name) (:name state))))))

(defspec error-always-changes-status

  100

  (prop/for-all

   [any-commands  gen/commands

    error-command (gen/gen-command-with gen/gen-bad-raw :update)]

   (let [all-results (process-all (conj any-commands error-command) gen/raw-mortgage)]

     (is (= (:status (:event (last all-results)))

            :errored))))

Property tests for the product state transitions



● Evolving data models
● Checking system boundaries
● Makes sense when building complex stateful apps
● Encourages thinking of general properties of the system

Summary



Thank you! We are hiring!

github.com/akshaykarle
twitter.com/akshay_karle

https://www.google.com/url?q=https://github.com/akshaykarle&sa=D&ust=1581599798173000&usg=AFQjCNHFOvEM1R6KiiJD5zUhfJDezq8gxQ
https://www.google.com/url?q=https://twitter.com/akshay_karle&sa=D&ust=1581599798174000&usg=AFQjCNFijVKgw-71PdxoiG_pVIsvVBprtw

