Building Stuff with Clojure & 3D Printing

Repairability Score

Repairability 1 out of 10 (10 is easiest to repair)

why Clojure?

run anywhere, anyhow

collaboration

composability

functional modeling

FULL CALLONS 3D Mode #53

Polymesh

Constructive Solid Geometry

Bezier curves/patches

NURBS surfaces

The stack

Live demo

3D Printing

FDM

SLA

SLS

S sculpteo

HP.1

People

Thank you

github.com/altitude twitter.com/superzamp

References

Solid Modeling

https://fr.slideshare.net/michaeljamesheron/03-graphical-representation

https://en.wikipedia.org/wiki/Solid modeling

https://en.wikipedia.org/wiki/Constructive_solid_geometry

https://transmagic.com/six-reasons-watertight-models-matter/

OpenSCAD

https://en.wikibooks.org/wiki/OpenSCAD User Manual

https://github.com/altitude/scad-clj-demo