
Unleash The
Power Of The
REPL

Dana Borinski
 2019

AppsFlyer in
a Nutshell

Click

Install

Match

AppsFlyer in Numbers

200+
Engineers
Worldwide

200+
Microservices

1500
Servers

90B+
Events / Day

95%
Devices with

AppsFlyer’s SDK

Stack trace and prints
as tools

(println “to the rescue!”)

Debugging with the
REPL

Is there a right
approach?

Understanding the
code flow

 mate-clj

Agenda

+ REPL =

Let’s dive in

Me, every
time I see a
stack trace

1. Stack Trace

1. The Stack Trace

1. The Stack Trace

2. Synchronization

 2. Code & Data Synchronization

 2. Code & Data Synchronization

 2. Code & Data Synchronization

 2. Code & Data Synchronization

● Using the default user namespace.

● Sync the states data with the program

● Fast reloading

● My Clojure Workflow, Reloaded - By Stuart Sierra

States Reloading

http://thinkrelevance.com/blog/2013/06/04/clojure-workflow-reloaded

3. Code Flow Debugging

 3. Code Flow Debugging

● Simple

● Fast feedback

● Can be combined in functions and macros

(println “to the rescue!”)

 3. Code Flow Debugging

 3. Code Flow Debugging

But...

mate-clj

mate-clj
Debug your code out of the box

https://github.com/AppsFlyer/mate-clj

https://github.com/AppsFlyer/mate-clj

 mate-clj

 mate-clj

 mate-clj

mate-clj
Pull Requests Are Welcome!

https://github.com/AppsFlyer/mate-clj

https://github.com/AppsFlyer/mate-clj

4. Logging Libraries

● Level tagging

● Line numbers

● Source namespace

● Low overhead

Logging Libraries
Advanced Prints

Log level namespace Line number

 5. Logging Libraries

Date & Time

● timbre

● tools.logging

● cambium

Cambum

Cambium

Logging Libraries

https://github.com/ptaoussanis/timbre
https://github.com/clojure/tools.logging
https://cambium-clojure.github.io/

● The stack trace

● State data and code synchronization

● Code flow debugging using prints

● mate-clj

● Logging libraries

Recap

+ REPL =

Every new line of code you willingly bring into

the world is code that has to be debugged,

code that has to be read and understood, code

that has to be supported.

Jeff Atwood

Thank you
&

Safe Debugging!
dana.borinski@appsflyer.com

