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AppsFlyer in Numbers
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Stack trace and prints 
as tools

(println “to the rescue!”)

Debugging with the 
REPL

Is there a right 
approach?

Understanding the 
code flow

 mate-clj

Agenda
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Let’s dive in



Me, every 
time I see a 
stack trace



1. Stack Trace



1. The Stack Trace
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2. Synchronization
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 2.  Code & Data Synchronization



● Using the default user namespace.

● Sync the states data with the program

● Fast reloading

● My Clojure Workflow, Reloaded - By Stuart Sierra

States Reloading

http://thinkrelevance.com/blog/2013/06/04/clojure-workflow-reloaded




3. Code Flow Debugging



 3. Code Flow Debugging





● Simple

● Fast feedback

● Can be combined in functions and macros

(println “to the rescue!”)
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But...



mate-clj



mate-clj
Debug your code out of the box

https://github.com/AppsFlyer/mate-clj

https://github.com/AppsFlyer/mate-clj
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mate-clj
Pull Requests Are Welcome!

https://github.com/AppsFlyer/mate-clj

https://github.com/AppsFlyer/mate-clj


4. Logging Libraries



● Level tagging

● Line numbers

● Source namespace

● Low overhead

Logging Libraries
Advanced Prints



Log level namespace Line number

 5.  Logging Libraries

Date & Time



● timbre

● tools.logging

● cambium

Cambum

Cambium

Logging Libraries

https://github.com/ptaoussanis/timbre
https://github.com/clojure/tools.logging
https://cambium-clojure.github.io/


● The stack trace

● State data and code synchronization

● Code flow debugging using prints

● mate-clj

● Logging libraries

Recap



+ REPL =



Every new line of code you willingly bring into 

the world is code that has to be debugged, 

code that has to be read and understood, code 

that has to be supported.

Jeff Atwood



Thank you
& 

Safe Debugging!
dana.borinski@appsflyer.com 


