Clojure Art

Karl Brodowsky IT Sky Consulting GmbH http://www.it-sky-consulting-com/ http://brodowsky.it-sky.net/

#reClojure #ClojureArt

Some Fun

Disclaimer

 Images not created with Clojure are from Wikimedia Commons licensed under CC

How to get started

```
• Use frame (Swing) and draw:
(defn make-frame []
  (let [frame
    (doto (javax.swing.JFrame.)
            (.setSize (java.awt.Dimension. 1000 1000))
            (.setVisible true))]
  frame))
```


Drawing (pixelwise)

(defn draw-pixel [frame color x y] (let [gfx (.getGraphics frame)] (.setColor gfx color) (.fillRect gfx x y 1 1)))

Let's get functional

How to make a picture of a function?

• Exceptions: just try to ignore them...

Let's get functional

How to make a picture of a function? --> Start with the x-axis

Naïve Approach

- Just create 3 functions
- f_r(x, y), f_g(x, y), f_b(x, y)
- Calculate colors
- Draw it...

 How do we constrain values to 0..255? --> we do not want to worry about that when writing our function

How to make a picture of a function? --> Try arctan or tanh

How to make a picture of a function? --> Try tanh

How to make a picture of a function? --> Try bit-and

How to make a picture of a function? --> Try sin

χ

How to make a picture of a function? --> Try sin

We want f_r, f_g and f_b to be different to have colors work, but not too independent -- three totally different functions

 We want f_r, f_g and f_b to be different to have colors work, but not too independent – sin of three different functions

• We want f_r, f_g and f_b to be different to have colors work, but not too independent – sin of three similar functions

RGB like 3 Phase Electricity

RGB like 3 Phase Electricity

- Find the right "speed" of the functions
- Here we vary the color based on function values

- atan2 -> angle -> vary color with angle
- Put value in sin with different phases for different colors

• Keep it smooth

Combine two or three centers with +

• Use distance from point instead of angle

Add distance from multiple points

Multiply or xor distance from multiple points

One center, combine radius and angle

Combine with an oscillation or roughness

Apply functions (here sin) to radius and/or angle

Create grids using gcd of distances divided by something

• Polynomials (here degree 3) can give these bubbles

Something like f(x) - y: sin(x) and atan(x)

More dynamic sin(f(x)-y) with right scalings

Combining the graphs for f(x)-y and f(y)-x with +

Combining the graphs for f(x)-y and f(y)-x with Pythagoras

Combining the graphs for f(x)-y and f(y)-x with Multiplication

Apply more complex functions

Other ideas

 Use additional functions to darken/lighten points of the image differently or to change saturation (with care)

Riemann Sphere

- Use functions (x,y)->(x,y) (or complex functions if you like)
- Use Riemann Sphere
- Use color encoding
- 0/infinity = red
- +/- i = blue
- +/- 1 = green

Use HSV instead of RGB

Karl Brodowsky http://brodowsky.it-sky.net/ http://www.it-sky-consulting.com/ https://github.com/bk1/clojure-art @bk1_168 #reClojure #ClojureArt

Questions

???????????

he

